<sup id="sa0om"></sup>
<acronym id="sa0om"></acronym>
<acronym id="sa0om"><center id="sa0om"></center></acronym>
<sup id="sa0om"><div id="sa0om"></div></sup>
<rt id="sa0om"><small id="sa0om"></small></rt>
<acronym id="sa0om"><small id="sa0om"></small></acronym>
當前位置:首頁  新聞公告  學術交流
德國卡塞爾大學Olaf Stursberg教授和Zonglin Liu(劉宗林)博士講座
發布人:劉玉菡??發布時間:2021-05-24?? 瀏覽次數:11

應航天學院王振華副教授的邀請,德國卡塞爾大學Olaf Stursberg教授和Zonglin Liu(劉宗林)博士于2021527日(周四)舉行線上學術講座,歡迎感興趣的師生參加。



ZOOM會議室ID990 9777 6082;密碼:601711


Olaf Stursberg教授報告題目:

Optimization-based Control of Cyber-Physical Systems



Distributed Systems, in which dynamically modeled subsystems are controlled by digital units and exchange information by communication networks, are often termed cyber-physical systems (CPS). The control design for this system class is challenging, since the task has to account for the interaction between the subsystems, for uncertainty and possibly time-varying structures, and often for large dimensions. This talk provides an overview of different techniques investigated by the Control and System Theory lab to address these challenges. Starting from a general introduction into control challenges for CPS, the talk will first describe how a hierarchy of optimization-based decision routines leads to safe cooperation of autonomous vehicles. The second part outlines an approach to use the principles of model predictive control (MPC) within a distributed control setting, in which predictions are used not only for the local control of subsystems, but also to foresee and consider delay of communication in the network connecting the controlled subsystems. The following part addresses the question of how stochastically modeled uncertainties of the behavior of interacting subsystems can be embedded into predictive control schemes. The final part reports on an approach to approximate the (often computationally demanding) step of synthesizing optimal controllers by neural networks, while guaranteeing the satisfaction of constraints.



Prof. Dr.-Ing. Olaf Stursberg is Full Professor and Head of the Control and System Theory Group at the Department of Electrical Engineering and Computer Science, University of Kassel, Germany. From 2001 to 2002 he was a post-doctoral researcher at the Carnegie Mellon University, and a senior researcher and lecturer at the University of Dortmund from 2002 to 2006. From 2006 to 2009 he was a professor for Automation Systems at the Technical University of Munich. From 2009 until now, he is Full Professor at the University of Kassel. His main research areas include methods for optimal and predictive control of networked and hierarchical systems, techniques for analysis and design of hybrid dynamic systems, applications of AI in control engineering, and the control of stochastic and uncertain systems in different domains of application.



Zonglin Liu博士報告題目:

Distributed Solution of Mixed-Integer Programs Arising for Model Predictive Control of Networked Systems



For networked systems, control schemes based on model predictive control (MPC) can provide guarantees for the satisfaction of state and input constraints. They may lead, however, also to high computational complexity, e.g. if the problem formulation involves logic conditions as in hybrid system. While the centralized solution over all subsystems may appear most promising with respect to constraint satisfaction, the high computational effort may prevent the centralized online solution. Nevertheless, recent developments of distributed MPC have shown that the overall complexity can be reduced by decomposing the global problem into a set of local problems with smaller size and solving these in parallel. However, most of these approaches are based on decomposition starting from dual formulations, but the techniques are only applicable to convex problems with only continuous variables. If integer variables are to be considered, the distributed solution using duality-based decomposition may lead to sub-optimal solutions or even infeasibility. This presentation first reviews distributed MPC for systems with only continuous variables, including the dual formulation for distributed solution and approaches to preserve recursive feasibility and stability. Then, a novel distributed solution for MPC with integer variables is introduced, which utilizes recent results on the distributed solution of mixed-integer problems (MIP). This approach decomposes the centralized MIP problem using different necessary conditions of optimality, and the distributed solution process is carried out sequentially by employing different strategies based on these conditions. Significant reductions of the computation time compared to centralized approaches are demonstrated by a larger number of numerical experiments.



Dr.-Ing. Zonglin Liu received B.Sc. from the Harbin Institute of Technology, China, in 2012, and M.Sc from the University of Kassel, Germany, in 2015. From 2015 to 2021, he was a doctoral researcher at the Control and System Theory Group of the University of Kassel, and received the best score Summa Cum Laude for his doctoral thesis with the title ''Optimizing Control of Distributed Cyber-Physical Systems''. From 2021 ongoing, he works as a Post-doctoral researcher in the same department. His research activities include developing  methods for optimal and predictive control of cyberphysical systems with uncertainties, efficient distributed solutions for large-scale optimization problems, and use of system- and control-theoretic principles to help in diminishing the Corona/Covid pandemic.